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We performed direct calculations of carrier hopping rates in strongly disordered conjugated poly-
mers based on the atomic structure of the system, the corresponding electronic states and their
coupling to all phonon modes. We found that the dependence of hopping rates on distance and
the dependence of the mobility on temperature are significantly different than the ones stemming
from the simple Miller-Abrahams model, regardless of the choice of the parameters in the model.
A model that satisfactorily describes the hopping rates in the system and avoids the explicit calcu-
lation of electron-phonon coupling constants was then proposed and verified. Our results indicate
that, in addition to electronic density of states, the phonon density of states and the spatial overlap
of the wavefunctions are the quantities necessary to properly describe carrier hopping in disordered
conjugated polymers.

The carrier mobility of conjugated polymer materials is
the most important physical property1–6 for their applica-
tion in organic electronic devices. Realistic polymer ma-
terials contain both crystalline (ordered) and amorphous
(disordered) regions.7 Charge carrier transport is often
limited by the presence of amorphous regions. In these
regions the electronic states are localized due to presence
of disorder and carrier transport takes place by phonon-
assisted carrier hopping8 between localized states. Such
transport is traditionally modeled by assuming a certain
density of electronic states in energy and space and a cer-
tain form of hopping probabilities between them.6,9–12 Dif-
ferent models are distinguished by the electronic density
of states (DOS) assumed in the model, which is usually
the tail of the Gaussian9,10,12 or the exponential11 dis-
tribution. The transition rates are typically assumed to
decay exponentially with the distance between localized
states,9–12 in the Miller-Abrahams (MA) form.13 Free pa-
rameters that appear in the models are fitted to the ex-
perimental mobility measurements.

From the applications of such models, it is widely un-
derstood that the mobility of the material strongly de-
pends on the electronic DOS which is therefore believed
to be the most important material property when charge
transport is concerned.14 On the other hand, much less ef-
fort has been put into understanding how different forms
of the transition rates affect the transport and in partic-
ular whether the MA expression is suitable at all. To
address these questions, in this letter we perform direct
ab-initio calculations of the transition rates between elec-
tronic states starting from atomic structure of the system,
followed by explicit calculation of electronic state wave-
functions and their coupling to phonons. We find strong
deviations of the transition rate dependence on distance
from the MA form and analyze the consequences of this
on electronic transport.

Electronic structure calculations were performed using
the plane wave pseudopotential approach and the charge
patching method for organic systems introduced in Ref. 15
which gives the accuracy similar to the density functional
theory in local density approximation, but with a much
smaller computational cost. Atomic structure of the sys-
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FIG. 1: (Color online) Wavefunctions of top ten electronic
states in the valence band for the P3HT system of the size
58.6×29.3×29.3 Å3 (5020 atoms). The isosurfaces correspond
to a 50% probability of finding an electron inside the surface.
The hole DOS and the phonon DOS, extracted from our cal-
culations are shown in the right.

tem was generated from classical molecular dynamics us-
ing a simulated annealing procedure, as described in de-
tail in Ref. 16. For concreteness, we analyze the poly(3-
hexylthiophene) (P3HT) polymer, one of the most widely
studied conjugated polymers for electronics and optoelec-
tronics.

Electron-phonon (e-ph) coupling constants due to in-
teraction with all phonon modes in the system were also
calculated using the charge patching method, as described
in detail in Ref. 17. The transition rate for downward hops
between electronic states i and j was then calculated as

WF
ij = π

∑

α

|Mij,α|
2

ωα
[N(h̄ωα) + 1] δ (εi − εj − h̄ωα) ,

(1)
where Mij,α = 〈ψi|∂H/∂να|ψj〉 is the e-ph coupling con-
stant between electronic states i and j due to phonon
mode α, ∂H/∂να is the change of the single-particle
Hamiltonian due to atomic displacements according to
phonon mode α, h̄ωα is the energy of that mode,

N(h̄ωα) =
(

exp h̄ωα

kBT − 1
)

−1

is the phonon occupation

number given by the Bose-Einstein distribution at a tem-
perature T and εi is the energy of electronic state i.

The dependence of transition rates calculated using
Eq. (1) on distance for the P3HT system (Fig. 1) is shown
as circles in Fig. 2a. Each circle represents one down-
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ward transition. Strong deviations from the MA expres-
sion (which would yield a straight line in Fig. 2a) are evi-
dent. Despite that, one can still argue that some effective
linear fit of the logWij vs. dij (where dij is the distance
between the states i and j) dependence could be sufficient
for the description of transport through the system.
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FIG. 2: (Color online) The dependence of transition rates and
wavefunction overlaps on distance for the system presented in
Fig. 1: (a) The dependence of transition rates for downward
hops on distance in different models. The numbers in legend
specify the value of a in Å for models A and C. (b) The depen-
dence of the wavefunction moduli overlap S

2

ij on the distance
between the states.

To establish whether this is the case, we have calcu-
lated the temperature dependence of the hole mobility in
P3HT polymer (in the limit of low carrier concentration)
using the multiscale methodology introduced in Ref. 17.
In Fig. 3a we compare the results of the simulation where
transition rates were calculated according to Eq. (1) (that
will be referred to as the full model), with the simula-
tion where these were replaced with the MA expression
(referred to as model A in what follows) given as:

WA
ij = W0 exp (−dij/a) (2)

for downward hops. In all our simulations energies of
electronic states and their spatial positions were kept the
same. In Eq. (2) the conventional value of W0 = 1014s−1

was taken, while simulations were performed for different
values of a, specified in legend labels in Fig. 3a. As seen
in Fig. 3a, the slope of the temperature dependence of the
mobility in model A is significantly different than in the
full model and therefore model A with physically reason-
able values of W0 cannot reproduce the results of the full
model. We find that one has to take the (unrealistic) val-
ues of W fit

0 = 6.3× 1020 s−1 and a = 1 Å in model A to fit
the temperature dependence from the full model, shown
in Fig. 3a.

It has been a common practice to fit the experimentally
measured temperature dependence of the mobility using
the MA model and extract the electronic DOS from such
a fit.1,11,12 Our results on the other hand imply that the
electronic DOS obtained that way is rather some effective
DOS, which together with the MA model can reproduce
the experimental mobility.

It would be desirable to have a model which is still
sufficiently simple and on the other hand accurate enough
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FIG. 3: (Color online) (a) Temperature dependence of the hole
mobility in P3HT polymer calculated using different models.
The numbers in legend labels in the figure specify the value of
a in Å for models A and C. (b) Electric field dependence of the
mobility calculated using different models. The parameters in
the models have been chosen to yield the same temperature
dependence of mobility.

to properly describe the hopping rates and the transport.
One can simplify Eq. (1) by introducing an approximation
for the calculation of Mij,α as simply proportional to the
overlap Sij =

∫

d3
r|ψi(r)| · |ψj(r)| of the wavefunction

moduli. We can then rewrite Eq. (1) as (that we will refer
to as model B):

WB
ij = β2S2

ij [N(εij) + 1]Dph(εij)/εij , (3)

where Dph(E) is the phonon DOS normalized such that
∫

∞

0
Dph(E)dE = 1 (it is shown in Fig. 1), εij = |εi − εj |

and β is the proportionality factor, chosen to be equal to
107eVs−1/2 which gives a good fit of model B to the full
model, as seen in Fig. 4. The temperature dependence
of the mobility in model B agrees excellently with the
mobility in the full model, as can be seen from Fig. 3.

Model B is simpler than the full model since it requires
only the evaluation of wavefunctions and not the e-ph cou-
pling constants. It is tempting to further simplify that
model by assuming that Sij in Eq. 3 decays exponen-
tially with distance between the states, which gives the
expression that we will refer to as model C:

WC
ij = β2 exp (−dij/a) [N(εij) + 1]Dph(εij)/εij . (4)

However, the actual dependence of Sij on distance, shown
in Fig. 2b, is significantly different from the simple expo-
nentially decaying function. In a system with spherical
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FIG. 4: (Color online) Comparison of the transition rates in
full model (W F ) and models A, B and C for the system shown
in Fig. 1. The parameters in the models have been chosen to
yield the same temperature dependence of mobility.

localized states, it is quite plausible to assume the expo-
nentially decaying overlap. On the other hand, the wave-
functions in conjugated polymers are significantly differ-
ent from spherical wavefunctions, as seen in Fig. 1. These
states are localized within the few rings of the main thio-
phene chain. Their orientation might be important and
their localization length can vary. Nevertheless, one can
still wonder whether a model based on the exponential de-
cay of the overlap [Eq. (4)] can be effective; e.g. whether
a certain fit to the dependence shown in Fig. 2b could
be satisfactory for the description of transport. When
a = 1.6 Å, the mobility obtained from this model is in
good agreement with the full model (see Fig. 3). How-
ever, the corresponding dependence of transition rates on
distance (triangles in Fig. 2a) does not fit well the same
dependence in the full model. Therefore, although both
models A and C can fit the temperature dependence of the
mobility, albeit with unrealistic parameters (that do not
give reliable hopping rates, see Fig. 4), it is interesting to
see whether such fitted models would be able to accurately
describe other physical properties. To demonstrate this,
we have calculated the electric field dependence of the mo-
bility using the methodology described in Ref. 18, using
the parameters that fit the temperature dependence of the
mobility in the full model. As can be seen from Fig. 3b,
both models A and C give different results than the full
model.

We also note that the results of all the simulations
reported here yield the temperature dependence of the
mobility of the lnµ ∼ −1/T form, which is the depen-
dence that is obtained in the phenomenological models
with exponential DOS11 and the mobility edge models.7

On the other hand, Gaussian disorder model gives the

lnµ ∼ −1/T 2 dependence.9,12 It would be very interest-
ing to understand how the assumptions inherent to phe-
nomenological models (these were outlined in the intro-
ductory paragraph) affect the similarities and differences
in the results of our simulations and these models. This
is however beyond the scope of this letter (except for the
role of the form of the transition rates).

In conclusion, our results indicate that hopping rates in
strongly disordered conjugated polymers are determined
by the spatial overlap of the wavefunctions of the states
involved and the phonon DOS, and are not very sensitive
to the details of individual phonon modes. The overlap of
the wavefunctions, on the other hand, cannot be simply
described as a function exponentially decaying with dis-
tance. We add to the common wisdom that the electronic
DOS determines the charge carrier transport in disordered
polymers two more important factors: the wavefunction
overlap and the phonon DOS.
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